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Abstract-This paper. which is the first in a two-part study. addresses certain issues concern109 the
small-strain theory of nonlinear elasticity. It considers isotropic materials which possess a hnear
response in shear and a nonlinear response in dilatation. and (i) estabhshes an e~phcit necessary
and sutficient condition for the e~istence of pi~'Cewise homogeneous def,'rmati'>ns. (ii) obtains a
characterization of the set of all such deformations. (iii) derives an e~pression f,'r the "driving
traction" on a surface of strain discontinuity, (iv) discusses the notil'n of a kinetic law. and finally
(v) makes Stlme remarks on (al the driving force on a crad;-tip. (b) thc unwuphng of thc shear and
dilatational invariants in the strain energy function .•md (c) the intersection of a surl~lce "f strain
discontmuity with a traction-free surface. While the analysis is carried out within a three-dimensional
sctting. the results are shown to have a p.trticularly simple form when e.~pressed in terms of a certalll
constitutive function r(i:). In Part" of this study we e~al11ine a specific boundary.value problem.

I. INTRODUCTION

In this paper. which is the first in a two-part study. wc show that ct:rtain fcaturcs of thc
finite theory ofelasticity are also present in the small-strain nonlinear theory; the partit:ular
class of constitutive laws that we consider here is one that has heen used to model the
mechanical response ofceramit: composites undergoing supercritical phase transformations.
In Part I[ we will examine a specific houndary-value prohlem.

A numher of recent studies in/inile c!e/imlllllioll elasticity thcory have heen concerned
with "nonelliptic materials". sec for example Aheyaratne (llJXO. 198:1). Erickscn (1975).
Gurtin (198:1). Hutchinson and Neale (1982). James (1984. 1(86). Knowlcs (1979). K nowlcs
and Sternherg (1978) and Silling (1987). Such materials are capahle of sustaining defor­
mations whose gradient is discontinuous across certain surt:lces in the hody ; this leads to
a tremendous lack of uniqueness of solution to houndary-value prohlems. since the elass
of functions from among which a solution is sought has to he greatly enlarged to allow for
sw.:h deformations. Moreover. quasi-static motions of a hody composed of such a nominally
clastic material can involve a dissipation of mechanical energy at particles located on a
moving surface of discontinuity (Knowles. 1(79).

Continuum mechanical treatments of stress-induced phase transformations in solids
involve such deformations (e.g. James. 19X4. 1986). In the context of phase transformations,
a surface of displacement gradient discontinuity corresponds to a phase houndary separating
two different phases of the material. and the aforementioned non-uniqueness might be
thought of as arising due to the fact that the classical equations of the continuum theory
do not account for the kinetics of the transformation.

In the present study we examine the corresponding issues within the injinitesimal
strain theory of nonlinear elasticity. We show that the aforementioned phenomena (of
discontinuous. dissipative. non-unique deformations) persist in the infinitesimal strain
theory too. suggesting that (in some sense) it is the constitutive nonlinearity rather than
the kinematical one that is the principal source of these features.

In this study we restrict attention to the particular class of constitutive laws that
were proposed by Budiansky. Hutchinson and Lamhropoulos (I lJ8:1) for modeling the
mechanical response of certain transforming ceramics. The fracture toughness of these

tThe result., reported here were obtained in the course of an investigatioll supported in part by the U.S. Office
of Sa'·al Re'iCarch.

I~OI



I~O~ R. AIlEYARA r'if and G-H. JIA:"G

ceramic composites (which contain second phase particles that undergo a phase trans­
formation) was known to be higher than that of the brink ceramic matrix (Garvie et al..
1975: Evans and Cannon. 1986: l\1c\keking and Evans. 198:). In order to model this
phenomenon at the continuum kvel. Budiansky I!t al. (1983) derived a homogenized
constitutive law for such composites using arguments based on the self-consistent method.
They argued that since the transformation leads to particles twinned into layers of alter­
nating shear. the average shear associated with the transformation. from a continuum point
of view. is essentially zero. Accordingly. they proposed (and studied) a constitutive law
with a linear response in shear and a tri-linear response in dilatation: see also Silling (1987).
It is this class of materials that we will study here (modified to allow the dilatational
response to be arbitrary).

Chen and Reyes !\Ioral (1986) have experimentally examined the relative importance
of shear and dilatation in transforming ceramics. and Lambropoulos ( 1986) has proposed
a more general constitutive law that accounts for both of these effects. We do not consider
such generalizations here.

In this paper. we tirst recall the ellipticity conditions for the three-dimensional dis­
placement equations of equilibrium: they are shown to have a particularly simple interpret­
ation in terms of the stress response function of the material in un i-axial deformation. I(l;).

Next. in Section 3. we examine conditions under which a three-dimensional piecewise
homogeneous deformation can oe sustained oy the material. and derive a single necessary
and sullicient condition for the existence of piecewise homogeneous deformations. This
condition t(Hl is expressed in a p;lrtinliarly simple fllrm in terms of I(I:): in addition to
providing infllrmation on existence. it also allows us to characterize the set of a/l possiole
piecewise honl\lgencous cq ui Ii bri Ulll sta tes.

As show oy Knowles (1979). whcn tl1\: thcory of tinitc elasticity is oroadened to allow
for equiliorium lklds with discontinuous displaccment gradicnts. thc usual oalance oetween
the rate of external work and the rate of storage of elastic Cl1l:rgy during a quasi-static
mot ion no longer holds. Instead. one Ii nds tha t mecha nica I cncrgy rna y oe dissipa ted at
points on thc surfaCl:s of discontinuity. This in turns pcrmits onc to introdw.:e the notion
of a "dril'ill.tl lrucliol/" which may oe viewed as a normal traction that the oody applies to
the surface of discontinuity at each of its points. In Section 4 we observe that a disssipation
of mechanical energy can also occur in the small-strain theory of elasticity. and we derive
an explicit expression for the driving traction in the case of the aforementioned materials:
this too may oe simply expressed in terms of ~(/:).

The stn:ss response fllnctiLln in uni-axial defLlrmation r(/:) plays such a visible role in
all of these results because (as shLlwn in SectiLln 3) the ILlcal deformations on the two sides
of a surl~lce of discontinuity differ from each other by precisely a uni-axial stretch in the
direction normal to that surface.

In Section 5 we bridly discuss the need for additional constitutive information in on.Jer
to complete the tht:ory. As Jiscussd there. this might. for example. take the form of a
'"kinetic law" which relates the driving traction on the surface ofJiscontinuity to its velocity
of propagatilln. The "l1ow rule" utilized oy Budiansky ('I lIl. (19S3) is equivalent to a
particular kinetic law as will be discussed more fully in Part II.

The results in this paper pertaining to the existence of piecewise homogeneous defor­
mations (in three dimensions) have a similar form to analogous results for isotropic.
incompressible elastic materials undergoing linite p/lI1/(, deformations (Abeyaratne and
Knowles. 19S9). Likewise. the (three-Jimensional) driving traction formula here is similar
to the corresponding formulae for finite /'''[//(' and lIlIli-p/al/c deformations (Abeyaratne
and Knowles. 19R9: Yatomi and Nishimura. 19XJ). A discussion of kinetic relations in the
particular setting of the one-dimensional theory of oars was given in Abeyaratne anJ
Knowles (19X9),

Finally we make some dosing remarks in Section 6. In Section 6.1 we observe that the
driving force on the tip of a crack is generally affected 01' the presence of a surface of strain
discontinuity. ("/'('1/ it I!I(' crllck is SllIl;ol/ary: see Budiansky ('I lI/. (19X3). A relationship
between the far field value of the }-integral. the near-tip value of} and the resultant driving
force on the surface of discontinuity is derivt:d. The possihility of sustaining anti-plane
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shear deformations is discussed in Section 6.2 and is connected to the coupling of the shear
and dilatational terms in the strain energy function. In Section 6.3 we show that when a
surface of strain discontinuity intersects a traction-free surface. it must do so tangentially
(unless the strength of the discontinuity vanishes at that point).

1. PRELIMINARIES

Consider an elastic body occuping a region R of three-dimensional space. let x be the
position vector of a particle in R and let u(x) be its displacement. Suppose that there is a
smooth surface S which lies in R. such that the displacement field is continuous on Rand
twice continuously differentiable on R - S; Vu may suffer a finite jump discontinuity across
S. let H. sand e denote the displacement gradient tensor. the infinitesimal strain tensor
and the strain deviator respectively:

Displacement continuity across S requircs

[[II,.,]]!, = 0 for XES

(I)

(2)

for all vectors (that arc tangential to S at x; [['J] indicates the jump across the surface S.
Finally. let 6(x) and k(x) denote the respective strain invariants which represent the
dilatation and shear at a particle x:

L\ = tr I: }

k ' I' for x E R- S.. = [2 tr (c-)j- (3)

Next. let l1(x) be the stress tensor lleld on R and suppose that O'(x) is continuously
difTerentiable on R - S; 0' may suITer a finite jump discontinuity across S. Equilibrium in
the absence of body forces requires

for XE R-S}
ror XE S

(4)

(5)

where n is a unit normal vector on S. A surface S which carries jump discontinuities in e
and 0' while maintaining displacement and traction continuity is called an equilihrillm siwek
or phase houndary.

Turning to the constitutive law of the material at hand. suppose that it is homogeneous.
isotropic and hyperclastic. The clastic potential W then depends on the deformation only
through the three principal invariants of strain. A particular case of special interest is that
in which W depends only on the shear and dilatational invariants k and 6 :

Wee) = W(k•.1).

The stress-strain relation 0' = cJ W/ee at a particle x E R - S then specializes to

(6)

(7)

Ir the material is such that the mean stress (tid3 depends on the deformation only through
the dilatation &,;. one can show using (7) that it is necessary and sufficient that (6) have the
separable form W(k• .1) = f(k) +9(6) which can be more conveniently written as
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W(k.~) = f* i(l\) dl\+f.1 o'(~) d~ for k ~ O. - x. < ~ < x.; i(O) = 0'(0) = O. (8)
o ()

(Alternatively. one show that the components ofdeviatoric stress depend on the deformation
solely through the components of deviatoric strain if and only if W has the form (8).) The
constitutive functions ilk) and o'(~) may be readily interpreted as follows: in a simple shear
deformation III = kx:. u: = O. u, = O. the shear stress component a I: is found from (8). (7)
to be a l : = i(k); in a pure dilatational deformation u, = (~'3)x,. one finds that a,,/3 = a(~).

Thus. the function ilk) is the shear stress respunse jimctiun of the material in simple shear.
while the function 0'(L\) is the mean stress response junction of the material in pure dilatation.

Finally. we further specialize (8) to the case in which the shear stress response in simple
shear is linear: ilk) = ilk. This is motivated by the fact that such constitutive relations
appear to be of interest in the continuum mechanical modeling ofcertain ceramic composites
containing particles which undergo stress induced phase transformations (see Budiansky et
al.. 1983; Evans and Cannon. 1986). Thus. in this study we consider materials characterized
by an elastic potential

Il"(k.~) = (p 2)k: + f.1 ri(~) d~ for k ~ O. - 'X < ~ <x (9)

"

where II ( > 0) is the infinitesimal slH:ar modulus of the material. The stress strain n:lation
(7) now speciali/es to

The hulk modulus of the material (9) is

I/(A) == ri(A)/A for -:() < ~ <Xi.

( 10)

( I I)

It is useful for later purposes to consider the response of this body in a uni-axial
(kformationll l = I:X I .lI: = 111 = O. From (10) one gets 11 11 = 1:(1:) where

1:(1:) == ri(I:) +4W/3 for -XJ < I: < (fj ; ( 12)

1:(1:) is the stress respoll.\'e jimctiot/ 0/ tlte material it/ lit/i-axial dejiml/{uion.
The displacement equations of equilibrium for the class of materials under discussion

here are, by (10). (4), (I), (3)

(13)

where

( 14)

The system of partial difl'erential equations (13) is said to be (strongly) elliptic at a solution
u and at a point XE R-S if

( 15)

for all unit vectors m and n. It is not dilTicult to show from (l4). (15) and II> 0 that (strong)
ellipticity prevails if and only if

ri'(~(X» > -411/3 ( 16)

where Mx) = f.a(x) is the dilatation associated with the given deformation at the point
under consideration. Ohserve from (12) that this ellipticity condition can be expressed
simply in terms of the stress response function in uni-axial deformations as
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~'(6.(x» > O.
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( 17)

Thus the ellipticity of the governing equations is directly related to the invertibility of the
stress response function in uni-axial deformations. (f ~ fails to be monotonically increasing
on - Xi < /; < x, ellipticity will be lost at some deformation. (n: '(E) > 0 for all E. we say
that the material is elliptic. We assume throughout that ~ '(0) > 0 so that ellipticity prevails
at the undeformed state; since ~'(O) = 1\+4W3 where 1\ is the infinitesimal bulk modulus.
this. together with J-l > O. are the usual ellipticity conditions of linear elasticity.

3. PIECEWISE HOMOGENEOUS DISPLACEMENT FIELDS

Not all homogeneous, isotropic elastic materials characterized by the constitutive
relation (10) can sustain deformations with discontinuous strains. (n this section, we
determine a simple necessary and sufficient condition on the material which determines
whether or not it can sustain piecewise homogeneous deformations of this type. In addition.
for materials that can sustain such deformations, we obtain a characterization (in a certain
sense) of the entire collection of possible piecewise homogeneous deformations.

We now consider the special case in which R coincides with all of (x 1'.\1. x J)-space. S
is a plane through the origin. and the displacement gradient is constant on each side of S.

~ -
Let n be a unit vector normal to the plane S. and let R. R be the two opcn half-spaces into

which S divides R with the normal n pointing into R. The field equations (13) will then he
trivially satisfied in R - S. and all that remains to be fulfllled are the jump conditions (2)
and (5).

Consider the piecewise homogeneous displacement field

j
{1x

U=

IIx

I-

for x E R

for XE R
( IX)

..
whae the displacement gradient tensors II and II arc constant and distinct:

Define t i. ! and f... by

The displacement field (I H) will be continuous across S if and only if

I-

H"t} = 11'/1 for all unit vectors t normal to n

while by (5). (10) the tractions will be continuous across S if and only if

( 19)

(20)

(21 )

(22)

(23)

Given a tensor H. the shock proh/em consists of finding a tensor H and a unit vector n such
that (22) and (23) (with (20). (21», hold.

We first establish a necessary condition which must hold if the shock problem is to
~ -

have a solution. To this end, suppose that given H, there is a tensor H and a unit vector n
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such that (20)-(23) hold. It can be readily shown that (22) holds if and only if there exists
a vector a sUl.:h that

Thus (20), (21). (24) yield

- ...
H'I = H'I +a,n;. (24)

(25)

(26)

Turning next to the requirement (23) and multiplying it by the components /, of any unit
vector normal to 0 gives

which in view of (25) simplifies to

a/, = O.

(27)

(2X)

Since this must hold for all unit vectors t in the plane S, it follows that a is parallel to 0:

a = ClO.

By (29). (1(J).

'J.=!l.-A.

Moreovcr (25) can hc writtcn. in vicw 01'(29). as

I:,1 = /;'1 + 'XI/,I/ j'

(19)

(30)

(31 )

Finally. multiply the traction continuity condition (23) hy 1/, and use (31). (30) to obtain

(31)

which. in terms of the un i-axial deformation response function I(L\). n:ads

(33)

Ne.'(t we will show that if the (necessary) condition (33) holds. then this in fact
guarantees the existence of a solution to the shock problem. In order to show this, suppose

that 1'1 is a given tensor. Define! by (21),. (20)1' If there exists a number L\ (oF Li) such
that (33) holds. then (for each arbitrary unit vector 0) we can define 'J. by (30). a by (19)

and H by (24). It may be readily verified that these tensors Hand H automatically satisfy
the requirements (22), (23) of displacement and traction continuity across the plane with
unit normal o. Thus we have the following result:

•Proposition. Given a tensor H. there exists an associated piecewise homogeneous

equilibrium shock if and only if there is a number L\ (oF ~ == Ha ) such
that (33) holds.
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Whe:n the constitutive law is such that the stress response: function r(t:) is monotonically
increasing (in which case the material is elliptic) we see from the preceding proposition that
the material cannot sustain a piecewise homogeneous deformation. On the other hand. if
the material is such that r'(,1) :::; 0 on some interval. then since r'(O) > O. it follows that.
piecewise homogeneous deformations will exist for suitably chose:n values of H.

In addition to providing information concerning the existence of a piecewise homo­

geneous deformation associated with the given displacement gradient H. the preceding
result also permits us to characterize the set of all such deformations which can be associated

with that H: it states that for every numbe:r ,1 for which (33) holds. and for all choices of

the unit normal vector n. one can construct an acce:ptable H. Let =: denote the following

set in the (Li. ,1)-plane:

(34)

..
According to the preceding proposition. given a displacement gradient tensor H. the associ-

ated shock problem has a solution if ami only if there is a number Asuch that (Li. A) e =:
where A= itu : moreover. all tensors II that can be connected to Hby a shock are generated

by all numbers Af{)r which (Li.,1) E =:. The set =: characterizes the collection of all possible, .

shocks. A sketch of the curve =: in the (Ll. ,1)-plane. corresponding to a particular class of
materials. will be given in Section 5.

Finally. we note that according to (24). (29). (30) the displacement gradient tensors

1'. and II arc related hy

• •II" = 1I,,+(A-,1)II,II,. (35)

•this implies that the deformation on R is equiv:t1ent to the deformation on R together with
a uni-axial stretch in the direl.:tion normal to the shock surface. This is presumably the
reason why the stress response funl:tion in uni-axial deformation l:(I:) plays such a central
role in the prel:cding (and suhsl:qucnt) results.

4. DRIVING TRACTION

We now consider a quasi-statil: motion of the body and let 11(',1).10 :::; I:::; I h be a one­
pammeter 1:II11ily of solutions of the displal.:emcnt equations of equilibrium (13) of the type
described in SCl.:tion 2. Let S, c R be the 1:1l11ily of shol.:ks assol.:iated with this motion. and
assume that the particle velocity v(X.I) = (~u(x.I)/h exists and is continuous in (x. t) for
x E R - St, 10 :::; I :::; I,. and that v is piecewise continuous on R x [Iu, t ,1.

Let dU) denote the dill'crenl.:e between the rate of external work (on any lixed regular
region ncR) and the rate at whieh el:istic energy is being stored (in n):

(36)

d(t) is the raIl' of dissipalioll of mechanical energy in the region n. By adapting to the
present sm:tll-strain theory the analysis given by Knowles (1983). one can show that d(l)
may be written as
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d(/) = L.nfn.v dA (37)

P( x. I) is the energy-momentum tensor

(38)

(39)

and Y(x. I) is the velocity of a point on the moving surface 5,. If the motion happens to be
smooth. P(·. t) will be continuous across 5, and so (37). (38) gives d(1) = 0 for It) ~ I ~ It.

In general however the dissipation rate d(/) # 0 whenever n intersects 5,.

Combining (36) with (37) yields

JO'n'\' d ..I+f (-In)'V dA = dd ( W(£) dV. It) ~ I ~ II (40)
;n '" " n I In

which may be viewed as a work· energy identity. It states that the sum of the rates at which
work is oeing done on n by the external forces and the phase boundary 5, balances the
rate at which energy is oeing stored in n. Accordingly. -In may be thought of as the
traction applied oy the surface S, on the body. or equivalently. +In can oe viewed as a
"dril'il/Y Il'lIcfiol/" exerted on the phase ooundary S, by the surrounding material; the scalar
I determincs the magnitude of this traction. The expression (3S) (with (3lJ)) is a special
case of a formula given oy Eshelby (llJ70) : see also Eshclby (llJ56). Rice (llJ75).

If we postulate th"t "t each instant. the rate of storage of energy in n cannot exceed
the rale of exlemal wlll'k on II. then we must require the dissipation rate d(/) to be non­

neg"live fill' "II sub-regions II and all instants I. Thus. by (37).

where /'" is the nlll'lllal velocity of a point on the surface 5,:

/'" = \"11 for XES,. It) ~ I ~ I I'

(41 )

(42)

Alternati vely. the dissipl/liol/ il/('IIUl/lily (41) can be shown to be a consequence of the second
law of thernlOdynamics under isothermal conditions: see Knowles (1979). In general. given
an equiliorium state. the inequality (41) restricts the din:ction in whieh the surface S, may
move in a quasi-static motion commencing from this state.

A particularly simple expression for the driving traction can be derived in the case of
materials characterized by the special clastic potential (9). First. from (24). (2lJ) one has

[[f/d]' = -';t.II,n,.

Next. in view of (10). (12). (43) and the continuity of traction.

However from (3). ( I ) and (31) one obtains

which can oe used to elimin"te the term ~,/I,nf from (44) to give

(43)

(44)

(45)
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Finally. since (9) and (12) provide

eqns (38). (39), (46). (47) and (30) yield the desired expression

.
f = L.1 r.(A) dA-r.(l\)(l\-A) for xe St. to ~ I ~ I,

1209

(46)

(47)

(48)

for the driving traction. In the finite theory. formulae of this general form have been derived
in the special case of "normal shocks" in plane and anti-plane finite deformations of
isotropic. incompressible elastic solids (Abeyaratne and Knowles, 1989; Yatomi and Nish­
imura, 1983).

It is useful to write (48) as

f=F(l\.6) for xeS,. to~/~/1

where F is the function defined on the set 2 by

.
F(l\.6) =rI:(A) dA - I:(!)(! -6) for (!.6) e 2.

(49)

(50)

By (49). the driving traction f at a point on the phase boundary S, depends only on the

local dilatations 6.. 6 on the two sides of S,; f does not depend on the amounts of shear le,
k, nor on the orientation of S,. Moreover. in view of (50) and (33), the value off may be
interpreted geometrically as the difference between the area under the uni-axial deformation

stress-strain curve between Aand !, and the area of the rectangle on the same base with

height I:(!).

5. KINETIC LAW. AN EXAMPLE

In Part II (Abeyaratne and Jiang, 1989) we will present an example which shows that
boundary-value problems formulated in the conventional manner, for materials char­
acterized by (9), may sutfer from a tremendous lack of uniqueness. This is known to be the
case in the finite theory as well (e.g. Abeyaratne, 1980; Abeyaratne and Knowles, 1989).
This non-uniqueness suggests that the theory. as formulated, is deficient. and that it ought
to be supplemented with additional constitutive information. One way in which to
implement this is to postulate a constitutive relation. or "kinetic law". which applies to
particles on S" and relates the driving traction! to the normal velocity of propagation Vn

of the phase boundary.
In order to formalize this. let/\( and!m be the supremum and infemum of the function

F(6.. A) on the set 3. Then. one might suppose that there is a constitutive function V(·)
defined on [!m,fll] such that

Vn = V(f) on S" 10 ~ t ~ t l •

In order to conform to the dissipativity inequality (42). V must be such that

(51)
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Fig. I. Stress response curve in pure dilatation.

/V(f) ~ 0 for / E Um fw]· (52)

The form (51) is, of course. merely an example of a class of kinetic laws that might be
imposed; it could be generalized to include dependence on other local variables as well so

that, for example, a kinetic law mightread V. = V(~ • .1), where the constitutive function
V is defined on 3.

In order to illustrate this (and some of the preceding results) we now choose the
dilatational stress response function in the constitutive law (10) to be as follows

for 0 ~ d ~ d.lt

for d M ~ d ~ d m

for d ~ d m ;

(53)

Ii, d",. d M and U1' are material constant such that

{l>O. dm>dM>O, ur<O}
lidm +ur > 0

(dm -dMH{l+4f.1/3) < -(11"

(54)

The second condition in (54) implies that d(dm ) > 0, while (54) J ensures that the system of
equations (13) is non-elliptic when d m < d(x) < d.w. In this example we will confine atten­
tion to the range d > 0 and consequently we have left d(d) undefined for negative values
of its argument. The specific constitutive law (53), (54) is the one considered by Budiansky.
et al. (1983) in the case of super-critical transformations. As shown in Fig. I, as the
dilatation increases, the mean stress first rises linearly to a maximum value (1M = pdM , it
then declines linearly to the value (1m = {ldm +(11" and finally rises again with the initial
slope fl.

The response function of this material in un i-axial deformations is given by (53), (12)
as
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Fig. 2. The set =: characterizing all possible shock states.

l:!ll

where we have set

{

(Xl;

L(I;) = (xf.+<Tr(f.-~\/)/(~m-~.\f)

G(f. +IT I'

(X = II +41L/3.

for 0 ~ f. ~ ~,\I

for ~.\I ~ C ~ ~m

for I; ~ ~m

(55)

(56)

Finally, we introduce the following additional notation which pertains to certain special
points on the stress-strain curve shown in Fig. I :

~m 1 = ~I/I +IT rl(X. ~.\13 = ~.\f -ITrlG( }

~"J = (~m + ~\1 )/2 -IT1'/270.
(57)

Note that the straight lines which join (~.\f' IT,\() to (~\f J. a(~\f3»' (~,," a(~" I» to
(~,,3,a(~,,3»' and (~m,.a(~md) to (~m,(Jm), each have the same slope, -4JL/3; see (32) for
the significance of this. Moreover, ~"I and ~"J are seen to obey the conditions

where

L(~~I) = L(~"d = ~LI/I+L\f)/2}

LI/I - L(~I/I)' L.\f - L(~lf)'
(58)

The set 3 for this material. which characterizes the complete set of possible shocks in

the (it ~)-plane,may be readily found from (34), (55). It consists of the points on the polygon

ABCDEFA shown in Fig. 2, except for the vertices A and D which lie on the line! = ~.
We turn next to equation (50) which defines the driving traction function F on this

set 3. Explicit formulae for F may be readily derived from (50), (55). For example.

when (!,~) E EF. one finds

(59)

We do not display the remaining formulae here. It is particularly useful to know the sign
of the driving traction. since then the direction of propagation of the phase boundary is
known through the dissipativity inequality (41). The sign of F may be read otT from (59)
(and the analogous formulae appropriate to the other points on 3); one finds that
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v (f)

f.. > f1 ~ 0

f", < f l ~ 0

Fig. 3. Kinetic response function.

{

> 0 for (!.~)E(AB]+[BP)+(DE]+[EQ).

F(!.~) = < 0 for (~.~)E(PC]+[CD)+(QF]+[FA).

= 0 for (Ll. M = P or Q.

(60)

(The symbol (AB] in (60) denotes the set of all points on the line AB excluding the end
point A but including the point B.) The points P and Q which are associated with zero
driving traction are sometimes referred to as "Maxwell states". They are given by

(61 )

where dol and Llu3 were defined in (57); see also (58). Also, one finds that the driving
traction achieves its largest value fu at B (and also at E) and its smallest value 1,,, at C (and
also at F). These values are

1,,, = C1r(~.'/-~",)/2=t «0).

(62)

(63)

Finally, Fig. 3 shows an example of a kinetic function V that might be used in the
kinetic law (51). It is consistent with the admissibility requirement (52). In the example
which will be discussed in Part II. we will see how in a specific problem, the kinetic relation.
together with an initiation criterion, can be used to resolve the non-uniqueness referred to
earlier. In that example we will find that the kinetic relation of Fig. 3 generally leads to
rate-dependent "viscoplasticity-like" response. Two special cases which lead to reversible.
dissipation-free response and to rate-independent plasticity-like response will also be dis­
cussed there.

5.1. Some remarks on the kinetic law
In this sub-section we make some further observations on the kinetic relation. Consider

a deformed configuration of the body involving a shock S. Let x be a point on S and let E
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and abe the limiting values of the strain and stress tensors at x as x is approached from
the positive side of S; g and ii are the corresponding quantities on the negative side. The
unit normal to S at x, which points into the positive side, is n.

Let A denote the set of all symmetric tensors 8 which are "kinematically compatible"
with t g and n. i.e. tensors 8 such that the pair of strain tensors 8, B (or 8, g) can be
associated with a piecewise homogeneous deformation which has continuous displacements
across the surface with normal n:

A = {Ills j} = ti+(I/2)(Gjnj+Gjn,) for an arbitrary vector a}. (64)

(Since Ii and s are related by (25). the set A defined by (64) with Bis identical to the set
corresponding to g.) Clearly. both 8and £EA. Since aand ii obey (5), it is not difficult to
show that

+ [ (I) (~)] _ - [ (I) (2)] £' II (\) (') A(fj) l'.ij -sij - (fii Sij -e'j lor a 8 .8- E •

Next. we defined a function G by

(65)

(66)

for all tensors 8 in A. In order to study the extrema of G. it is easier to consider the function
6 which is defined on the set of alll'£'ctors and is such that

6(a) = G(8)

with 8 and a related by (64). Differentiating 6 with respect to ai yields

which when differentiated once more gives

(67)

(68)

(69)

It now follows from (68). (5) and the constitutive relationships ail = aW(B)!Sij.

uij = cW( g) / e,j. that 8 = Ii and 8 = S are both extrema of G, and from (69) and (15) that
they (locally) minimize G if strong ellipticity prevails at the appropriate strain Ii or 2.

Finally, on using (65). (66). (5), (38) and (39) we see that the difference between the
values of G on the two sides of S is precisely the driving traction on S at x:

f= GO)-G(2).

In order to illustrate this, consider the straight line in strain space,

(70)

(71)

o
which connects the strains Ii and s. All tensors 8 on this line belong to the set A. Let G(.::1)
be the restriction of G(Il) to this line. Then, Fig. 4 is a schematic diagram showing a graph
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.:..

Fig. 4. Schematic graph of the function G(~).

(I +
of G(6) versus 6. in a case where strong ellipticity prevails at "£ and t (i.e. at 6 = 6 and

6) so that they both correspond to minima of G. As the shock surface S moves through
the body. its normal velocity Vn at x is a measure of the (volume) rate of change at which
material on the positive side is transferred to the negative side. The kinetic relation (51) is
ther(i()re a relationship helll'een this rate and thejllJllp in G.

The discussion so far in this sub-section has not been specialized to the material (9).
In the case when the material is characterized by the strain energy function (9). one finds
by substituting (9) and (10) into (66), and simplifying using (71), (12). (I). (3), that

(I i'\ ·G(6) = I:(~) d~-(1/2)[I:(6)+I:(6)j6+constant.
(I

-00 < 6 < 00. (72)

When the response function in dilatation is as depicted in Fig. I, it is easy to show that the
n

graph of G as given by (72), (53), has the general form shown in Fig. 4; when
t 0

I: III < I: (~) < I:.If. G has precisely two local minima and one local maximum as in Fig. 4.

Moreover. in this case. G(Ll) - G( 6) (and therefore the driving traction 1) is equal to the
dilfcrcnce in the Gihhs free energy [[ Wee) - G,l'-,,]] ...

Diagrams of the form of Fig. 4 arc commonly encountered in metallurgical discussions
on the kinetics of phase tmnsformations; sec for example Porter and Easterling (1981).
The classical example of a kinetic relation in this context is the Arhhenius law which. in the
notation of Fig. 4. is based on the assumption that the rate of transfer of material from the

(lOt
positive side of S to the negative side is governed by the quantity G(6.)-G(~)(whichis
the "height of the barrier" in Fig. 4) and that the rate of transfer of material from the

(I (I -

negative side of S to the positive side is governed by the quantity G(6.)-G(6). This leads
to an explicit kinetic law of the form Vn = V(/). We refer to Fine (1964) (which is based
on Turnbull. 1956) for the details of such an argument.

6. CONCLUDING REMARKS

6.1. Dril'ing force on a crack-til'
In this section we briefly comment on the driving force on a crack-tip when the crack

is contained in a body composed of the material (10). For simplicity. suppose that the body
is a slab containing a traction-free through-crack (Fig. 5) and that the loading is such that
the deformation is planar. Suppose further that the body is composed of the material (10)
with the constitutive function I:(I:) defined by (12) being non-monotone. By the analysis in
Section 3. deformations of this body can involve shocks. Suppose for definiteness that there
is a single (cylindrical) phase boundary S as shown in Fig. 4: C is the curve along which S
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Fig. 5. Geometry of cracked slab with phase boundary C and integration paths r o. r".
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intersects the (x .. x2)-plane. The deformation is smooth at all points of the body inside C
(excluding points on the crack itself) as well as at all points outside C.

Let r 0 and r Xi be two closed curves as shown in Fig. 5 with r 0 being entirely within
C and r ~ entirely outside. The values of the J-integral associated with these two curves
are. respectively,

(73)

where ds denotes arc length, n is the unit outward normal vector on the appropriate curve,
and P,/I are the components of the energy-momentum tensor:

(74)

(Greek subscripts take the values I and 2 only.)
The J-integral is path-independent provided the paths of integration do not insect the

shock curve C; this, together with the traction-free nature of the crack surface yields the
alternate expression

(75)

where P,JI are the limiting values of P'1l as a point on C is approached from within. Similarly

(76)

Combining (75) and (76) gives

(77)

Next, in view of (74), (I), displacement continuity (2), and traction continuity (5), one
sees that
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(78)

where t is a unit tangent vector on C. Thus the vector [[p.II]]: nil is normal to the curve C.
and by (38)

(79)

fis the driving traction on the shock. Finally. combining (77) with (79) provides the desired
expression

(80)

Equation (78) states that the driving force Jtip on the crack-tip equ<tls the difference
between J XC) (the "applied value of J") and the resultant driving force on the shock. Thus
in general. J 1ip ¥- J XJ' (This was also noted by Silling. 1987.) (n certain exceptional cases.
for example if the deformation is such thatf=constant on C. the integral in (80) will vanish
and then J\ip =J x" The value of the shock driving tractionfdepends on (and is determined
by) the particular kinetic relation governing the evolution of the shock. If the resultant
driving force on the shock is in the positive Xl-direction then. by (80). J,.p < Jr.

6.2. Anti-plane deformations ami the constitutive law
Consider a right-cylindrical body whose middle cross-section D lies in the (x,.x~)­

plane. and suppose that a purely axial displacement fieldf(x I. x!) is prescribed on the lateral
surface of the body:

(81 )

Assume, for the moment. that the cylinder is composed of a homogeneous. isotropic elastic
material characterized by a strain energy function W(k, A) which is ltot necessarily of the
particular form (9).

In order to examine whether this body can respond to the loading (81) in an anti-plane
manner, we assume that it does and take

(82)

with u =f on aD. From (I) and (3), we find that the shear and dilatational invariants
associated with the displacement field (82) are

k = IVul, .1 = 0 on D.

By (7). the corresponding stress components are

(83)

11" = (11! = I1n = ()W(k,O)jiJ.1,

1113 = (U.I jk) aW(k,O)jiJk.
(11,=0 }

on D
11!3 = (u.1jk) DW(k.O)jr:k

(84)

with k given by (83). Substituting (84) into the equilibrium equations leads to the following
three equations involving the single displacement component II:
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~c [(~W(k.O)i£'L1]= O. ~[cW(k.O)/CL1] = 0 )
ex, L'X~ on D

i-[(II.l/k) cW(k,O)/ck]+ ~c [(u.~/k) cW(k,O)/ck] = 0
eXI ex~

1117

(85)

with k = ,Vu'. In generaL this is an over-determined system ofequations and therefore has
no solution. t Consequently, we conclude that despite the purely axial nature ofthe prescribed
howular), displacement (81). the displacement field within the body cannot (generally) be of
the ami-plane form (82). In particular, the in-plane displacement components II, and u~ will
not generally vanish. and neither will the dilatation.

If it so happens that the strain energy function W has the particular (separable) form
(8) or (9), then the first two equations in (85) are satisfied automatically and so the problem
is then not over-determined. Therefore, in this special case, the body can deform in an anti­
plane manner.

These observations may be of some relevance in the modeling of transforming ceramic
composites. If a cylindrical body composed of such a material was loaded by a purely axial
displacement (81), the second phase particles in the composite would undergo a martensitic
transformation when the applied displ'lcement became sufficiently large. Since this trans­
formation involves some dilatation (which in fact is of primary interest in this setting) it
follows that Ihe displacement field within the body will not be of the anti-plane form (82).
This in turn suggests that the strain energy function W(k, M characterizing such materials
might not have the separable form (8) or (9), but rather that the shear and dilatational
dependency in W would be coupled.

6.3. Intersection 01' a slwck Il'ith a tractioll-!ree slIrface
Consider a shock surface S which intersects the boundary DD of the body. Let x be a

point common to Sand iJD. und suppose that the shock strength A- Adocs not vanish at
x. Let m denote the unit outward normul to aD at x and let n be the (limiting) unit normal
to Sat x. Then, from (47) and (48) we have

(86)

while (26) and (28) give

(87)

Subtracting the second of (87) from the first, and using (86), leads to

(88)

and so

(89)

Suppose first that the boundary cD is traction-free at x: ~m = am = O. Then (89) with

L1 i= Arequires that

t Knowlcs (1977:1, I977b) has obtained a complete characterization of the class of materials which can sustain
anti-plane shear deformations in thejillite theory of elasticity.
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(n'm)n = m (90)

which implies that m = ±n. Thus, the shock surface S must be tangential to the boundary
cD at x.

Suppose next that the boundary cD is free of shear traction at x. Then by (89).

(0' mHo' t) = 0 for all vectors t normal to m. (91)

Thus in this case. either m = ±0 or m is normal to n and so the shock surface S is either
tangential or normal to D at x. (Note that Fig. 5 is consistent with these properties: C
intersects the traction-free crack tangentially and the shear traction-free line ahead of the
crack normally.)
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